Identification of Nonlinear Dynamic Systems Using Hammerstein-Type Neural Network
نویسندگان
چکیده
منابع مشابه
Nonlinear System Identification Using Hammerstein-Wiener Neural Network and subspace algorithms
Neural networks are applicable in identification systems from input-output data. In this report, we analyze theHammerstein-Wiener models and identify them. TheHammerstein-Wiener systems are the simplest type of block orientednonlinear systems where the linear dynamic block issandwiched in between two static nonlinear blocks, whichappear in many engineering applications; the aim of nonlinearsyst...
متن کاملDynamic Sliding Mode Control of Nonlinear Systems Using Neural Networks
Dynamic sliding mode control (DSMC) of nonlinear systems using neural networks is proposed. In DSMC the chattering is removed due to the integrator which is placed before the input control signal of the plant. However, in DSMC the augmented system is one dimension bigger than the actual system i.e. the states number of augmented system is more than the actual system and then to control of such ...
متن کاملnonlinear system identification using hammerstein-wiener neural network and subspace algorithms
neural networks are applicable in identification systems from input-output data. in this report, we analyze thehammerstein-wiener models and identify them. thehammerstein-wiener systems are the simplest type of block orientednonlinear systems where the linear dynamic block issandwiched in between two static nonlinear blocks, whichappear in many engineering applications; the aim of nonlinearsyst...
متن کاملIdentification of Hammerstein model using functional link artificial neural network
In this paper, a novel algorithm is developed for identifying Hammerstein model. The static nonlinear function is characterized by function link artificial neural network (FLANN) and the linear dynamic subsystem by an ARMA model. The utilization of FLANN can not only result in a simple and effective representation of static nonlinearity but also simplify the learning algorithm. A two-step proce...
متن کاملIdentification and Control of Nonlinear Systems Using Fuzzy Hammerstein Models
This paper addresses the identification and control of nonlinear systems by means of Fuzzy Hammerstein (FH) models, which consist of a static fuzzy model connected in series with a linear dynamic model. For the identification of nonlinear dynamic systems with the proposed FH models, two methods are proposed. The first one is an alternating optimization algorithm that iteratively refines the est...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2014
ISSN: 1024-123X,1563-5147
DOI: 10.1155/2014/959507